Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 63(3): 410-420, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35024866

RESUMO

The Chlorophyll Dephytylase1 (CLD1) and pheophytinase (PPH) proteins of Arabidopsis thaliana are homologous proteins characterized respectively as a dephytylase for chlorophylls (Chls) and pheophytin a (Phein a) and a Phein a-specific dephytylase. Three genes encoding CLD1/PPH homologs (dphA1, dphA2 and dphA3) were found in the genome of the cyanobacterium Synechococcus elongatus PCC 7942 and shown to be conserved in most cyanobacteria. His6-tagged DphA1, DphA2 and DphA3 proteins were expressed in Escherichia coli, purified to near homogeneity, and shown to exhibit significant levels of dephytylase activity for Chl a and Phein a. Each DphA protein showed similar dephytylase activities for Chl a and Phein a, but the three proteins were distinct in their kinetic properties, with DphA3 showing the highest and lowest Vmax and Km values, respectively, among the three. Transcription of dphA1 and dphA3 was enhanced under high-light conditions, whereas that of dphA2 was not affected by the light conditions. None of the dphA single mutants of S. elongatus showed profound growth defects under low (50 µmol photons m-2 s-1) or high (400 µmol photons m-2 s-1) light conditions. The triple dphA mutant did not show obvious growth defects under these conditions, either, but under illumination of 1,000 µmol photons m-2 s-1, the mutant showed more profound growth retardation compared with wild type (WT). The repair of photodamaged photosystem II (PSII) was much slower in the triple mutant than in WT. These results revealed that dephytylation of Chl a or Phein a or of both is required for efficient repair of photodamaged PSII.


Assuntos
Complexo de Proteína do Fotossistema II , Synechococcus , Clorofila/metabolismo , Luz , Feofitinas/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
2.
Plant Cell Physiol ; 63(1): 82-91, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34623441

RESUMO

Cyanobacterial mutants defective in acyl-acyl carrier protein synthetase (Aas) produce free fatty acids (FFAs) because the FFAs generated by deacylation of membrane lipids cannot be recycled. An engineered Aas-deficient mutant of Synechocystis sp. PCC 6803 grew normally under low-light (LL) conditions (50 µmol photons m-2 s-1) but was unable to sustain growth under high-light (HL) conditions (400 µmol photons m-2 s-1), revealing a crucial role of Aas in survival under the HL conditions. Several-times larger amounts of FFAs were produced by HL-exposed cultures than LL-grown cultures. Palmitic acid accounted for ∼85% of total FFAs in HL-exposed cultures, while C18 fatty acids (FAs) constituted ∼80% of the FFAs in LL-grown cultures. Since C16 FAs are esterified to the sn-2 position of lipids in the Synechocystis species, it was deduced that HL irradiation activated deacylation of lipids at the sn-2 position. Heterologous expression of FarB, the FFA exporter protein of Neisseria lactamica, prevented intracellular FFA accumulation and rescued the growth defect of the mutant under HL, indicating that intracellular FFA was the cause of growth inhibition. FarB expression also decreased the 'per-cell' yield of FFA under HL by 90% and decreased the proportion of palmitic acid to ∼15% of total FFA. These results indicated that the HL-induced lipid deacylation is triggered not by strong light per se but by HL-induced damage to the cells. It was deduced that there is a positive feedback loop between HL-induced damage and lipid deacylation, which is lethal unless FFA accumulation is prevented by Aas.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Luz/efeitos adversos , Lipídeos de Membrana/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Tioléster Hidrolases/metabolismo , Adaptação Ocular/fisiologia , Células Cultivadas/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Estresse Fisiológico
3.
Plant Cell Physiol ; 62(4): 721-731, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33650637

RESUMO

In cyanobacteria, the PII protein (the glnB gene product) regulates a number of proteins involved in nitrogen assimilation including PipX, the coactivator of the global nitrogen regulator protein NtcA. In Synechococcus elongatus PCC 7942, construction of a PII-less mutant retaining the wild-type pipX gene is difficult because of the toxicity of uncontrolled action of PipX and the other defect(s) resulting from the loss of PIIper se, but the nature of the PipX toxicity and the PipX-independent defect(s) remains unclear. Characterization of a PipX-less glnB mutant (PD4) in this study showed that the loss of PII increases the sensitivity of PSII to ammonium. Ammonium was shown to stimulate the formation of reactive oxygen species in the mutant cells. The ammonium-sensitive growth phenotype of PD4 was rescued by the addition of an antioxidant α-tocopherol, confirming that photo-oxidative damage was the major cause of the growth defect. A targeted PII mutant retaining wild-type pipX was successfully constructed from the wild-type S. elongatus strain (SPc) in the presence of α-tocopherol. The resulting mutant (PD1X) showed an unusual chlorophyll fluorescence profile, indicating extremely slow reduction and re-oxidation of QA, which was not observed in mutants defective in both glnB and pipX. These results showed that the aberrant action of uncontrolled PipX resulted in an impairment of the electron transport reactions in both the reducing and oxidizing sides of QA.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Proteínas de Bactérias/genética , Clorofila/química , Clorofila/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Fluorescência , Mutação , Proteínas PII Reguladoras de Nitrogênio/genética , Paraquat/farmacologia , Espécies Reativas de Oxigênio , Synechococcus/efeitos dos fármacos , Synechococcus/genética , alfa-Tocoferol/farmacologia
4.
J Biosci Bioeng ; 130(5): 464-470, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32713813

RESUMO

Cyanobacteria can grow photoautotrophically, producing a range of substances by absorbing sunlight and utilizing carbon dioxide, and can potentially be used as industrial microbes that have minimal sugar requirements. To evaluate this potential, we explored the possibility of l-glutamate production using the Synechocystis sp. PCC6803. The ybjL gene encoding the putative l-glutamate exporter from Escherichia coli was introduced, and l-glutamate production reached 2.3 g/L in 143 h (34°C, 100 µmol m-2 s-1). Then, we attempted to produce two flavor substances, (S)-linalool, a monoterpene alcohol, and the sesquiterpene (+)-valencene. The Synechocystis sp. PCC6803 strain in which the linalool synthase gene (LINS) from Actinidia arguta (AaLINS) was expressed under control of the tac promoter (GT0846K-Ptac-AaLINS) produced 11.4 mg/L (S)-linalool in 160 h (30°C, 50 µmol m-2 s-1). The strain in which AaLINS2 and the mutated farnesyl diphosphate synthase gene ispA∗ (S80F) from E. coli (GT0846K-PpsbA2-AaLINS-ispA∗) were expressed from the PpsbA2 promoter accumulated 11.6 mg/L (S)-linalool in 160 h. Genome analysis revealed that both strains had mutations in slr1270, suggesting that loss of Slr1270 function was necessary for high linalool accumulation. For sesquiterpene production, the valencene synthase gene from Callitropsis nootkatensis and the fernesyl diphosphate synthase (ispA) gene from E. coli were introduced, and the resultant strain produced 9.6 mg/L of (+)-valencene in 166 h (30°C, 50 µmol m-2 s-1). This study highlights the production efficiency of engineered cyanobacteria, providing insight into potential industrial applications.


Assuntos
Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/metabolismo , Ácido Glutâmico/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Synechocystis/metabolismo , Escherichia coli/genética , Aromatizantes/química , Aromatizantes/metabolismo , Engenharia Genética , Ácido Glutâmico/química , Estereoisomerismo , Synechocystis/genética
5.
Biotechnol Biofuels ; 10: 141, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580015

RESUMO

BACKGROUND: Cyanobacterial mutants engineered for production of free fatty acids (FFAs) secrete the products to the medium and hence are thought to be useful for biofuel production. The dAS1T mutant constructed from Synechococcus elongatus PCC 7942 has indeed a large capacity of FFA production, which is comparable to that of triacylglycerol production in green algae, but the yield of secreted FFAs is low because the cells accumulate most of the FFAs intracellularly and eventually die of their toxicity. To increase the FFA productivity, enhancement of FFA secretion is required. RESULTS: Growth of dAS1T cells but not WT cells was inhibited in a liquid medium supplemented with 0.13 g L-1 of palmitic acid. This suggested that when FFA accumulates in the medium, it would inhibit the release of FFA from the cell, leading to FFA accumulation in the cell to a toxic level. To remove FFAs from the medium during cultivation, an aqueous-organic two-phase culture system was developed. When the dAS1T culture was overlaid with isopropyl myristate (IM), the final cell density, cellular chlorophyll content, and the photosynthetic yield of PSII were greatly improved. The total amount of extracellular FFA was more than three times larger than that in the control culture grown without IM, with most of the secreted FFAs being recovered in the IM layer. The cellular FFA content was decreased by more than 85% by the presence of the IM layer. Thus, the two-phase culture system effectively facilitated FFA secretion out of the cell. An average FFA excretion rate of 1.5 mg L-1 h-1 was attained in the 432 h of cultivation, with a total amount of excreted FFA being 0.64 g L-1 of culture. These figures were more than three times higher than those reported previously for the cyanobacteria-based FFA production systems. CONCLUSIONS: Removal of FFA from the culture medium is important for improving the productivity of the FFA production system using cyanobacteria. Further increase in productivity would require an increase in both the rates of FFA production in the cell and active FFA export across the plasma membrane.

6.
Appl Microbiol Biotechnol ; 100(23): 10107-10113, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27704180

RESUMO

Cyanobacterial mutants defective in acyl-acyl carrier protein synthetase (Aas) secrete free fatty acids (FFAs) into the external medium and hence have been used for the studies aimed at photosynthetic production of biofuels. While the wild-type strain of Synechocystis sp. PCC 6803 is highly sensitive to exogenously added linolenic acid, mutants defective in the aas gene are known to be resistant to the externally provided fatty acid. In this study, the wild-type Synechocystis cells were shown to be sensitive to lauric, oleic, and linoleic acids as well, and the resistance to these fatty acids was shown to be enhanced by inactivation of the aas gene. On the basis of these observations, we developed an efficient method to isolate aas-deficient mutants from cultures of Synechocystis cells by counter selection using linoleic acid or linolenic acid as the selective agent. A variety of aas mutations were found in about 70 % of the FFA-resistant mutants thus selected. Various aas mutants were isolated also from Synechococcus sp. PCC 7002, using lauric acid as a selective agent. Selection using FFAs was useful also for construction of markerless aas knockout mutants from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002. Thus, genetic engineering of FFA-producing cyanobacterial strains would be greatly facilitated by the use of the FFAs for counter selection.


Assuntos
Carbono-Enxofre Ligases/deficiência , Deleção de Genes , Synechococcus/enzimologia , Synechocystis/enzimologia , Farmacorresistência Bacteriana , Ácidos Láuricos/toxicidade , Ácido Linoleico/toxicidade , Mutação , Seleção Genética , Synechococcus/efeitos dos fármacos , Synechococcus/genética , Synechocystis/efeitos dos fármacos , Synechocystis/genética
7.
Biotechnol Biofuels ; 9: 91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110287

RESUMO

BACKGROUND: Among the three model cyanobacterial species that have been used for engineering a system for photosynthetic production of free fatty acids (FFAs), Synechococcus elongatus PCC7942 has been the least successful; the FFA-excreting mutants constructed from this strain could attain lower rates of FFA excretion and lower final FFA concentrations than the mutants constructed from Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002. It has been suggested that S. elongatus PCC7942 cells suffer from toxicity of FFA, but the cause of the low productivity has remained to be determined. RESULTS: By modulating the expression level of the acyl-acyl carrier protein thioesterase and raising the light intensity during cultivation, FFA secretion rates comparable to those obtained with the other cyanobacterial species were attained with an engineered Synechococcus elongatus mutant (dAS1T). The final FFA concentration in the external medium was also higher than previously reported for other S. elongatus mutants. However, about 85 % of the total FFA in the culture was found to remain in the cells, causing severe photoinhibition. Targeted inactivation of the wzt gene in dAS1T, which gene manipulation was previously shown to result in loss of the hydrophilic O-antigen layer on the cell surface, increased FFA secretion, alleviated photoinhibition, and lead to 50 and 45 % increase in the final cell density and the total amount of FFA in the culture (i.e., the sum of the cellular and extracellular FFA), respectively. The average rate of production of total FFA by the culture of the ∆wzt strain was 2.7 mg L(-1) h(-1), being five times higher than those reported for Synechocystis sp. PCC 6803 and comparable to the rates of triacylglycerol production in green algae. CONCLUSION: Synechococcus elongatus PCC7942 has larger capacity of FFA production than Synechocystis sp. PCC6803 but accumulates most of the product in the cell because of the imbalance of the rates of FFA production and secretion. This causes severe photoinhibition and exerts adverse effects on cell growth and FFA productivity. Enhancement of FFA secretion would be required to fully exploiting the capacity of FFA production for the purpose of biofuel production.

8.
Plant Cell Physiol ; 56(12): 2467-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26468506

RESUMO

An RND (resistance-nodulation-division)-type transporter having the capacity to export free fatty acids (FFAs) was identified in the cyanobacterium Synechococcus elongatus strain PCC 7942 during characterization of a mutant strain engineered to produce FFAs. The basic strategy for construction of the FFA-producing mutant was a commonly used one, involving inactivation of the endogenous acyl-acyl carrier protein synthetase gene (aas) and introduction of a foreign thioesterase gene ('tesA), but a nitrate transport mutant NA3 was used as the parental strain to achieve slow, nitrate-limited growth in batch cultures. Also, a nitrogen-regulated promoter PnirA was used to drive 'tesA to maximize thioesterase expression during the nitrate-limited growth. The resulting mutant (dAS2T) was, however, incapable of growth under the conditions of nitrate limitation, presumably due to toxicity associated with FFA overproduction. Incubation of the mutant culture under the non-permissive conditions allowed for isolation of a pseudorevertant (dAS2T-pr1) capable of growth on nitrate. Genome sequence and gene expression analyses of this strain suggested that expression of an RND-type efflux system had rescued growth on nitrate. Targeted inactivation of the RND-type transporter genes in the wild-type strain resulted in loss of tolerance to exogenously added FFAs including capric, lauric, myristic, oleic and linolenic acids. Overexpression of the genes in dAS2T, on the other hand, enhanced FFA excretion and cell growth in nitrate-containing medium, verifying that the genes encode an efflux pump for FFAs. These results demonstrate the importance of the efflux system in efficient FFA production using genetically engineered cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Synechococcus/metabolismo , Sequência de Bases , Transporte Biológico , Genes de Plantas , Mutação/genética , Nitratos/metabolismo , Filogenia , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento
9.
Plant Cell Physiol ; 56(8): 1608-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063393

RESUMO

Most organisms capable of oxygenic photosynthesis have an aas gene encoding an acyl-acyl carrier protein synthetase (Aas), which activates free fatty acids (FFAs) via esterification to acyl carrier protein. Cyanobacterial aas mutants are often used for studies aimed at photosynthetic production of biofuels because the mutation leads to intracellular accumulation of FFAs and their secretion into the external medium, but the physiological significance of the production of FFAs and their recycling involving Aas has remained unclear. Using an aas-deficient mutant of Synechococcus elongatus strain PCC 7942, we show here that remodeling of membrane lipids is activated by high-intensity light and that the recycling of FFAs is essential for acclimation to high-light conditions. Unlike wild-type cells, the mutant cells could not increase their growth rate as the light intensity was increased from 50 to 400 µmol photons m(-2) s(-1), and the high-light-grown mutant cells accumulated FFAs and the lysolipids derived from all the four major classes of membrane lipids, revealing high-light-induced lipid deacylation. The high-light-grown mutant cells showed much lower PSII activity and Chl contents as compared with the wild-type cells or low-light-grown mutant cells. The loss of Aas accelerated photodamage of PSII but did not affect the repair process of PSII, indicating that PSII is destabilized in the mutant. Thus, Aas is essential for acclimation of the cyanobacterium to high-light conditions. The relevance of the present finding s to biofuel production using cyanobacteria is discussed.


Assuntos
Carbono-Enxofre Ligases/metabolismo , Synechococcus/enzimologia , Aclimatação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Enxofre Ligases/genética , Ácidos Graxos não Esterificados/metabolismo , Luz , Lipídeos de Membrana/metabolismo , Mutação , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/fisiologia , Complexo de Proteína do Fotossistema II/efeitos da radiação , Synechococcus/genética , Synechococcus/fisiologia , Synechococcus/efeitos da radiação
10.
J Biochem ; 157(5): 365-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25500211

RESUMO

The transcriptional activator, VnfA, is necessary for the expression of the structural genes encoding vanadium-dependent nitrogenase in Azotobacter vinelandii. We have previously reported that VnfA harbours a Fe-S cluster as a prosthetic group, presumably a 3Fe-4S type, which is vital for the transcriptionally active VnfA. A plausible effector molecule is a reactive oxygen species (ROS), which disassembles the Fe-S cluster switching the active VnfA to become fully inactive. This finding prompted us to investigate the effect of nitric oxide (NO), another physiologically important radical species on the VnfA activity. Unlike ROS, the VnfA activity was moderately inhibited and converged to 70% of the maximum by NO irrespective of its concentration. The Fe-S cluster of VnfA was found to react with NO to form a dinitrosyl-iron complex, either in the dimeric or monomeric form, dependent on the relative stoichiometry of NO to the Fe-S cluster. The VnfA species harbouring the dinitrosyl-iron complexes in each form exhibited 50% ATPase activity compared to the active VnfA. The findings of this study would open an argument about a biological effect of NO on nitrogenase in light of its transcriptional regulatory system.


Assuntos
Proteínas de Bactérias/fisiologia , Óxido Nítrico/fisiologia , Nitrogenase/metabolismo , Transativadores/fisiologia , Transcrição Gênica
11.
Photosynth Res ; 121(2-3): 151-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24585024

RESUMO

The carboxylase activities of crude carboxysome preparations obtained from the wild-type Synechococcus elongatus strain PCC 7942 strain and the mutant defective in the carboxysomal carbonic anhydrase (CA) were compared. The carboxylation reaction required high concentrations of bicarbonate and was not even saturated at 50 mM bicarbonate. With the initial concentrations of 50 mM and 25 mM for bicarbonate and ribulose-1,5-bisphosphate (RuBP), respectively, the initial rate of RuBP carboxylation by the mutant carboxysome (0.22 µmol mg(-1) protein min(-1)) was only 30 % of that observed for the wild-type carboxysomes (0.71 µmol mg(-1) protein min(-1)), indicating the importance of the presence of CA in efficient catalysis by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the mutant defective in the ccmLMNO genes, which lacks the carboxysome structure, could grow under aeration with 2 % (v/v) CO2 in air, the mutant defective in ccaA as well as ccmLMNO required 5 % (v/v) CO2 for growth, indicating that the cytoplasmically localized CcaA helped utilization of CO2 by the cytoplasmically localized Rubisco by counteracting the action of the CO2 hydration mechanism. The results predict that overexpression of Rubisco would hardly enhance CO2 fixation by the cyanobacterium at CO2 levels lower than 5 %, unless Rubisco is properly organized into carboxysomes.


Assuntos
Anidrases Carbônicas/metabolismo , Synechococcus/enzimologia , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulosefosfatos/metabolismo
12.
Plant Cell Physiol ; 55(2): 281-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24319077

RESUMO

Elevated CO2 has been reported to stimulate plant growth under nitrogen-sufficient conditions, but the effects of CO2 on growth in a constantly nitrogen-limited state, which is relevant to most natural habitats of plants, remain unclear. Here, we maintained Arabidopsis seedlings under such conditions by growing a mutant with reduced nitrate uptake activity on a medium containing nitrate as the sole nitrogen source. Under nitrogen-sufficient conditions (i.e. in the presence of ammonium), growth of shoots and roots of both the wild type (WT) and the mutant was increased approximately 2-fold by elevated CO2. Growth stimulation of shoots and roots by elevated CO2 was observed in the WT growing with nitrate as the sole nitrogen source, but in the mutant grown with nitrate, the high-CO2 conditions stimulated only the growth of roots. In the mutant, elevated CO2 caused well-known symptoms of nitrogen-starved plants, including decreased shoot/root ratio, reduced nitrate content and accumulation of anthocyanin, but also had an increased Chl content in the shoot, which was contradictory to the known effect of nitrogen depletion. A high-CO2-responsive change specific to the mutant was not observed in the levels of the major metabolites, although CO2 responses were observed in the WT and the mutant. These results indicated that elevated CO2 causes nitrogen limitation in the seedlings grown with a constantly limited supply of nitrogen, but the Chl content and the root biomass of the plant increase to enhance the activities of both photosynthesis and nitrogen uptake, while maintaining normal metabolism and response to high CO2.


Assuntos
Arabidopsis/fisiologia , Dióxido de Carbono/farmacologia , Metaboloma , Nitrogênio/deficiência , Compostos de Amônio/metabolismo , Antocianinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Técnicas de Inativação de Genes , Mutação , Nitratos/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Solo
13.
Plant Cell Physiol ; 54(9): 1504-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23811238

RESUMO

Among the known functions of the P(II) protein (the glnB gene product) in the cyanobacterium Synechococcus elongatus, negative regulation of the activity of PipX, a transcriptional co-activator of the NtcA regulon, has been thought to be essential for cell viability, because all the P(II)-less mutants thus far constructed carry spontaneous mutations in pipX. PipX is thus deduced to be a toxic protein, but its toxicity has not been clearly defined because of the lack of P(II)-deficient mutants carrying wild-type pipX. In this study, we developed a method to construct a targeted P(II)-less mutant of S. elongatus without the pipX mutation and determined the contribution of PipX to the detrimental effects of P(II) deficiency. Growth defects of the mutant were severe under nitrogen-replete conditions, i.e. in the presence of ammonium, but were also apparent under nitrogen-limited conditions. Genetic analyses indicated that the growth impairment observed under the nitrogen-limited conditions is largely due to the toxicity of PipX. Some of the phenotypes observed under the nitrogen-replete conditions, including reduced pigmentation and death of most of the cells after transfer from nitrogen-limited conditions to nitrogen-replete conditions, were ascribed to the toxicity of PipX, but inactivation of pipX only partially rescued the growth defect observed in the presence of ammonium, indicating the presence of an as yet unknown P(II) function(s) required for normal growth. Effects of ammonium addition on the nitrite uptake activity of the glnB mutant revealed a new function for P(II) in regulation of the activity of the ABC-type cyanate/nitrite transporter.


Assuntos
Proteínas de Bactérias/genética , Mutação , Proteínas PII Reguladoras de Nitrogênio/genética , Synechococcus/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Cianatos/metabolismo , Dados de Sequência Molecular , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Espectinomicina/farmacologia , Synechococcus/efeitos dos fármacos , Synechococcus/metabolismo
14.
Biochemistry ; 50(45): 9826-35, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21985581

RESUMO

The facile replacement of heme c in cytochromes c with non-natural prosthetic groups has been difficult to achieve due to two thioether linkages between cysteine residues and the heme. Fee et al. demonstrated that cytochrome c(552) from Thermus thermophilus, overproduced in the cytosol of E. coli, has a covalent linkage cleavable by heat between the heme and Cys11, as well as possessing the thioether linkage with Cys14 [Fee, J. A. (2004) Biochemistry 43, 12162-12176]. Prompted by this result, we prepared a C14A mutant, anticipating that the heme species in the mutant was bound to the polypeptide solely through the thermally cleavable linkage; therefore, the removal of the heme would be feasible after heating the protein. Contrary to this expectation, C14A immediately after purification (as-purified C14A) possessed no covalent linkage. An attempt to extract the heme using a conventional acid-butanone method was unsuccessful due to rapid linkage formation between the heme and polypeptide. Spectroscopic analyses suggested that the as-purified C14A possessed a heme b derivative where one of two peripheral vinyl groups had been replaced with a group containing a reactive carbonyl. A reaction of the as-purified C14A with [BH(3)CN](-) blocked the linkage formation on the carbonyl group, allowing a quantitative yield of heme-free apo-C14A. Reconstitution of apo-C14A was achieved with ferric and ferrous heme b and zinc protoporphyrin. All reconstituted C14As showed spontaneous covalent linkage formation. We propose that C14A is a potential source for the facile production of an artificial cytochrome c, containing a non-natural prosthetic group.


Assuntos
Proteínas de Bactérias/química , Grupo dos Citocromos c/química , Thermus thermophilus/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Cisteína/química , Grupo dos Citocromos c/genética , Primers do DNA/genética , Heme/química , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Protoporfirinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria , Thermus thermophilus/genética
15.
FEBS J ; 278(18): 3287-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21752196

RESUMO

VnfA is a transcriptional activator that is required for the expression of the structural genes encoding nitrogenase-2 in Azotobacter vinelandii. VnfA consists of three domains: an N-terminal regulatory domain termed GAF, including a Cys-rich motif; a central domain from the AAA+ family; and a C-terminal domain for DNA binding. Previously, we reported that transcriptionally active VnfA harboring an Fe-S cluster (presumably of the 3Fe-4S type) as a prosthetic group and the Cys-rich motif were possibly associated with coordination of the Fe-S cluster. In the present study, we have investigated the roles of the GAF and central domains in the regulatory function of VnfA using truncated variants: ΔN15(VnfA) and ΔGAF(VnfA) that lack the N-terminal 15 residues and whole GAF domain, respectively, and GAF(VnfA) consisting of only the GAF domain. ΔN15(VnfA) and ΔGAF(VnfA) lost the ability to bind the Fe-S cluster, whereas GAF(VnfA) was still able to bind to the cluster, consistent with the hypothesis that the Cys-rich motif is essential for Fe-S cluster binding. The GAF domain showed an inhibitory effect on the transcriptional activity of VnfA, which was reversed in the presence of the Fe-S cluster, and reactivated upon disassembly of the cluster. The inhibitory activity of the GAF domain acts on the NTPase activity of the central domain, whereas the binding ability of VnfA to DNA was not significantly affected, when VnfA retains its tetrameric conformation. The results imply that a major pathway, by which VnfA function is regulated, operates via the control of NTPase activity by the GAF domain.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transativadores/química , Transativadores/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Sequências Hélice-Volta-Hélice , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Dados de Sequência Molecular , Peso Molecular , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/genética , Nucleosídeo-Trifosfatase/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transativadores/genética
16.
J Exp Bot ; 62(4): 1411-24, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21282331

RESUMO

Nitrate assimilation by cyanobacteria is inhibited by the presence of ammonium in the growth medium. Both nitrate uptake and transcription of the nitrate assimilatory genes are regulated. The major intracellular signal for the regulation is, however, not ammonium or glutamine, but 2-oxoglutarate (2-OG), whose concentration changes according to the change in cellular C/N balance. When nitrogen is limiting growth, accumulation of 2-OG activates the transcription factor NtcA to induce transcription of the nitrate assimilation genes. Ammonium inhibits transcription by quickly depleting the 2-OG pool through its metabolism via the glutamine synthetase/glutamate synthase cycle. The P(II) protein inhibits the ABC-type nitrate transporter, and also nitrate reductase in some strains, by an unknown mechanism(s) when the cellular 2-OG level is low. Upon nitrogen limitation, 2-OG binds to P(II) to prevent the protein from inhibiting nitrate assimilation. A pathway-specific transcriptional regulator NtcB activates the nitrate assimilation genes in response to nitrite, either added to the medium or generated intracellularly by nitrate reduction. It plays an important role in selective activation of the nitrate assimilation pathway during growth under a limited supply of nitrate. P(II) was recently shown to regulate the activity of NtcA negatively by binding to PipX, a small coactivator protein of NtcA. On the basis of accumulating genome information from a variety of cyanobacteria and the molecular genetic data obtained from the representative strains, common features and group- or species-specific characteristics of the response of cyanobacteria to nitrogen is summarized and discussed in terms of ecophysiological significance.


Assuntos
Cianobactérias/metabolismo , Nitratos/metabolismo , Transdução de Sinais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Ácidos Cetoglutáricos/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Transportadores de Nitrato , Regiões Promotoras Genéticas , Compostos de Amônio Quaternário/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
17.
Chem Commun (Camb) ; 47(7): 2074-6, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21206940

RESUMO

We have constructed a robust ß-helical nanotube from the component proteins of bacteriophage T4 and modified this nanotube with Ru(II)(bpy)(3) and Re(I)(bpy)(CO)(3)Cl complexes. The photocatalytic system arranged on the tube catalyzes the reduction of CO(2) with higher reactivity than that of the mixture of the monomeric forms.


Assuntos
2,2'-Dipiridil/análogos & derivados , Bacteriófago T4/química , Dióxido de Carbono/química , Nanotubos/química , Rênio/química , Proteínas Virais/química , 2,2'-Dipiridil/química , Catálise , Complexos de Coordenação/química , Nanotubos/ultraestrutura , Oxirredução , Processos Fotoquímicos
18.
FEBS J ; 277(3): 817-32, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20067522

RESUMO

Transcriptional activator VnfA is required for the expression of a second nitrogenase system encoded in the vnfH and vnfDGK operons in Azotobacter vinelandii. In the present study, we have purified full-length VnfA produced in E. coli as recombinant proteins (Strep-tag attached and tag-less proteins), enabling detailed characterization of VnfA for the first time. The EPR spectra of whole cells producing tag-less VnfA (VnfA) show distinctive signals assignable to a 3Fe-4S cluster in the oxidized form ([Fe(3)S(4)](+)). Although aerobically purified VnfA shows no vestiges of any Fe-S clusters, enzymatic reconstitution under anaerobic conditions reproduced [Fe(3)S(4)](+) dominantly in the protein. Additional spectroscopic evidence of [Fe(3)S(4)](+)in vitro is provided by anaerobically purified Strep-tag attached VnfA. Thus, spectroscopic studies both in vivo and in vitro indicate the involvement of [Fe(3)S(4)](+) as a prosthetic group in VnfA. Molecular mass analyses reveal that VnfA is a tetramer both in the presence and absence of the Fe-S cluster. Quantitative data of iron and acid-labile sulfur in reconstituted VnfA are fitted with four 3Fe-4S clusters per a tetramer, suggesting that one subunit bears one cluster. In vivobeta-gal assays reveal that the Fe-S cluster which is presumably anchored in the GAF domain by the N-terminal cysteine residues is essential for VnfA to exert its transcription activity on the target nitrogenase genes. Unlike the NifAL system of A. vinelandii, O(2) shows no effect on the transcriptional activity of VnfA but reactive oxygen species is reactive to cause disassembly of the Fe-S cluster and turns active VnfA inactive.


Assuntos
Proteínas de Bactérias/genética , Proteínas Ferro-Enxofre/fisiologia , Nitrogenase/genética , Transativadores/genética , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Dados de Sequência Molecular , Subunidades Proteicas/fisiologia , Espécies Reativas de Oxigênio/farmacologia , Proteínas Recombinantes/metabolismo
19.
Angew Chem Int Ed Engl ; 48(11): 1946-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19199311

RESUMO

Searching for "intelligence": Azurin-PNIPAM conjugates were prepared by site-directed mutagenesis followed by protein reconstitution by using imidazole-conjugated poly(N-isopropylacrylamides). The polymer-bound imidazole acts as a ligand in the active site of the blue copper protein azurin. The bioconjugates showed thermosensitive behavior in electron-transfer processes with reduced cytochrome c.


Assuntos
Acrilamidas/química , Azurina/química , Polímeros/química , Acrilamidas/síntese química , Resinas Acrílicas , Azurina/síntese química , Azurina/genética , Dicroísmo Circular , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Mutagênese Sítio-Dirigida , Polímeros/síntese química , Engenharia de Proteínas , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...